China Professional Customized CNC Milling Machine Spline Shaft CNC Spline Milling Machine

Product Description

  Product Description

Special Spline Hobbing Machine for Shaft End Spline gear hobbing machine 

HXK450*2500   >>>   

Product Display 

CNC spline milling machine is our company’s own research and development of a series of screw processing machine leading varieties, the product is designed for processing all kinds of screw shaft end spline and special machine tools.  This machine adopts wide number control system.  

I. Machine tool structure features:  

1, the overall high strength casting bed, 4 guide rail layout, guide rail surface high-frequency quenching, good rigidity, high precision.  The bed saddle is on 2 guide rails, the head of a bed and the tail seat are on 2 guide rails.  Machine tool guide rail lubrication using centralized intermittent special lubrication pump lubrication, lubrication in time.  

2, the milling head motor adopts servo spindle motor, transmission adopts synchronous belt + helical gear structure, can make the hob achieve infinitely variable speed, wide speed range.  The milling head Angle is adjusted by worm gear and worm drive with variable tooth thickness, and the milling head is locked manually to ensure the stability of machining.  The milling head is equipped with automatic knife channeling mechanism, manual locking.  

3, the feed axis [Z axis, X axis] adopts precision ball screw through a wide number of servo motor direct drive, high transmission accuracy, good positioning accuracy.  

4, headstock spindle C axis adopts wide number servo motor directly connected precision wear-resistant worm gear and worm pair (the worm gear and worm pair is variable tooth thickness, the backlash is adjustable).  

5, slide plate for dovetail guide rail, high position accuracy, good fast speed.  

6, the spindle bearing is lubricated by oil, low temperature rise, high durability, and no daily lubrication maintenance.  

7, the machine tail seat is mechanical, flexible and reliable.  

8. The machine tool is equipped with a wide range of 218 control system.  

9, the machine is equipped with chip discharging machine, the iron filings generated in the milling process directly into the chip discharging machine, to ensure the clean working environment.  

10. The machine is equipped with 2 support frames and 3 tool axes.  

11. The electrical components in the machine tool electrical control cabinet are delixi brand. 

Our Factory 

Item Content Unit
Machine tool use spline processing  
The length of the lathe bed 4200 mm
Bed width 1200(reference) mm
Bed guide rail type guide rail four  
Maximum machining diameter Φ450 mm
Maximum length of workpiece 2500 mm
Maximum milling spline modulus 10 mm
Maximum milling spline length 2200 mm
Power of main motor 11.0(MDSLSBS) KW
Milling head motor speed 1000 r/min
Milling head reduction ratio 0.5715  
Spindle Diameter 27,32,40(1 each) mm
Maximum hob diameter Φ130 mm
range of hob shifting 110 mm
Tail stock spindle diameter Φ130 mm
Maximum stroke of tailstock sleeve 150 mm
Tailstock sleeve mounting taper hole Morse # 6  
Number of servo control shafts Workpiece rotation (C-axis)  
Transverse saddle (Z axis)  
Longitudinal slide (X axis)  
numerical control system Four axis and 3 linkage  
C axis motor 38 Nm
C axis drive type worm and gear domestic
C axis transmission ratio 0.0625  
Maximum speed of axis C 50 r/min(infinitely variable speed)
C axis positioning accuracy 10 second of arc
C axis chuck specifications K72-400-A28  
X axis motor 18 Nm
X axis ball screw specifications 5571 domestic
X axis guide rail pair type 55 ° dovetail  
X axis positioning accuracy 0.02 mm
Z axis motor 38 Nm
Z axis ball screw specifications 6310 domestic
Z-axis bed saddle guide rail pair type Mountain track + horizontal track  
B axis motor 15 Nm
B axis drive type Worm and worm + trapezoidal screw domestic
condenser water pump high pressure water pump 450W
machine overall dimension 5000*2100*2100  
Machine weight ≈7.5 Ton

Q1,  How do I send my query?
You can contact us via email, phone, instant messaging (WhatsApp, , Skype). 

Q2,If you don’t know which model is suitable for your company, please tell us your requirements for the equipment, or you can send us the product drawings, and our engineers can help you choose the most suitable model for you. 

Q3,delivery time
The project will be completed within 20 days after receiving the deposit. Please communicate with the sales staff about the specific construction period. 

Q4,Payment Terms
30% by T/T as down payment, balance 70% by T/T before delivery. If others payment terms, we can discuss.Welcome to inquiry sales.

Q5,Can your engineers come to help us install and debug the machine? 
Yes, our engineers are available to travel to your place. Round flight tickets & accommodation will be at your cost.

Q6If I can’t know how to operate. Can your engineer help me programme well on machine?
Sure. You can provide your detailed sample drawing.engineer can programme well on machine. Or in some machines, we will put into U-disc of operation video to help you.

Q7,Is there only 1 model of this device?
The standard processing diameter range of this equipment is 350mm, if you have other processing range, you can negotiate with the sales contact.  Length range, we can do from 1000mm to 8000mm, and all are integral cast bed. 

Q8, processing efficiency
Our CNC machine tool from the lathe bed casting weight, wide guide rail, large motor power, can use a maximum diameter of 50 round rod milling cutter processing, the maximum cutting depth can reach 40mm, so the processing efficiency is very high. 

Q9,What control system does the equipment use
Our standard configuration is HangZhou CNC system, fanuc and CHINAMFG can also be used, but the price is slightly different, please contact sales for details. 

  • Focus on the production of high efficiency special CNC machine tools.We also take special orders. That is, we can design machine tools for special purposes.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Video Remote Instruction
Warranty: One-Year After Sales Service
Application: Metal
Process Usage: Metal-Cutting CNC Machine Tools, CNC Non-Conventional Machine Tools, Metal-Forming CNC Machine Tools
Movement Method: Linear Control
Control Method: Semi-Closed Loop Control
Samples:
US$ 62800/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

spline shaft

How does the design of a spline shaft affect its performance?

The design of a spline shaft plays a crucial role in determining its performance characteristics. Here’s a detailed explanation:

1. Torque Transmission:

The design of the spline shaft directly affects its ability to transmit torque efficiently. Factors such as the spline profile, number of splines, and engagement length influence the torque-carrying capacity of the shaft. A well-designed spline profile with optimized dimensions ensures maximum contact area and load distribution, resulting in improved torque transmission.

2. Load Distribution:

A properly designed spline shaft distributes the applied load evenly across the engagement surfaces. This helps to minimize stress concentrations and prevents localized wear or failure. The design should consider factors such as spline profile geometry, tooth form, and surface finish to achieve optimal load distribution and enhance the overall performance of the shaft.

3. Misalignment Compensation:

Spline shafts can accommodate a certain degree of misalignment between the mating components. The design of the spline profile can incorporate features that allow for angular or parallel misalignment, ensuring effective power transmission even under misaligned conditions. Proper design considerations help maintain smooth operation and prevent excessive stress or premature failure.

4. Torsional Stiffness:

The design of the spline shaft influences its torsional stiffness, which is the resistance to twisting under torque. A stiffer shaft design reduces torsional deflection, improves torque response, and enhances the system’s overall performance. The shaft material, diameter, and spline profile all contribute to achieving the desired torsional stiffness.

5. Fatigue Resistance:

The design of the spline shaft should consider fatigue resistance to ensure long-term durability. Fatigue failure can occur due to repeated or cyclic loading. Proper design practices, such as optimizing the spline profile, selecting appropriate materials, and incorporating suitable surface treatments, can enhance the fatigue resistance of the shaft and extend its service life.

6. Surface Finish and Lubrication:

The surface finish of the spline shaft and the lubrication used significantly impact its performance. A smooth surface finish reduces friction, wear, and the potential for corrosion. Proper lubrication ensures adequate film formation, reduces heat generation, and minimizes wear. The design should incorporate considerations for surface finish requirements and lubrication provisions to optimize the shaft’s performance.

7. Environmental Considerations:

The design should take into account the specific environmental conditions in which the spline shaft will operate. Factors such as temperature, humidity, exposure to chemicals, or abrasive particles can affect the shaft’s performance and longevity. Suitable material selection, surface treatments, and sealing mechanisms can be incorporated into the design to withstand the environmental challenges.

8. Manufacturing Feasibility:

The design of the spline shaft should also consider manufacturing feasibility and cost-effectiveness. Complex designs may be challenging to produce or require specialized manufacturing processes, resulting in increased production costs. Balancing design complexity with manufacturability is crucial to ensure a practical and efficient manufacturing process.

By considering these design factors, engineers can optimize the performance of spline shafts, resulting in enhanced torque transmission, improved load distribution, misalignment compensation, torsional stiffness, fatigue resistance, surface finish, and environmental compatibility. A well-designed spline shaft contributes to the overall efficiency, reliability, and longevity of the mechanical system in which it is used.

spline shaft

What materials are commonly used in the construction of spline shafts?

Various materials are commonly used in the construction of spline shafts, depending on the specific application requirements. Here’s a list of commonly used materials:

1. Steel:

Steel is one of the most widely used materials for spline shafts. Different grades of steel, such as carbon steel, alloy steel, or stainless steel, can be employed based on factors like strength, hardness, and corrosion resistance. Steel offers excellent mechanical properties, including high strength, durability, and wear resistance, making it suitable for a broad range of applications.

2. Alloy Steel:

Alloy steel is a type of steel that contains additional alloying elements, such as chromium, molybdenum, or nickel. These alloying elements enhance the mechanical properties of the steel, providing improved strength, toughness, and wear resistance. Alloy steel spline shafts are commonly used in applications that require high torque capacity, durability, and resistance to fatigue.

3. Stainless Steel:

Stainless steel is known for its corrosion resistance properties, making it suitable for applications where the spline shaft is exposed to moisture or corrosive environments. Stainless steel spline shafts are commonly used in industries such as food processing, chemical processing, marine, and medical equipment.

4. Aluminum:

Aluminum is a lightweight material with good strength-to-weight ratio. It is often used in applications where weight reduction is a priority, such as automotive and aerospace industries. Aluminum spline shafts can provide advantages such as decreased rotating mass and improved fuel efficiency.

5. Titanium:

Titanium is a strong and lightweight material with excellent corrosion resistance. It is commonly used in high-performance applications where weight reduction, strength, and corrosion resistance are critical factors. Titanium spline shafts find applications in aerospace, motorsports, and high-end industrial equipment.

6. Brass:

Brass is an alloy of copper and zinc, offering good machinability and corrosion resistance. It is often used in applications that require electrical conductivity or a non-magnetic property. Brass spline shafts can be found in industries such as electronics, telecommunications, and instrumentation.

7. Plastics and Composite Materials:

In certain applications where weight reduction, corrosion resistance, or noise reduction is important, plastics or composite materials can be used for spline shafts. Materials such as nylon, acetal, or fiber-reinforced composites can provide specific advantages in terms of weight, low friction, and resistance to chemicals.

It’s important to note that material selection for spline shafts depends on factors such as load requirements, environmental conditions, operating temperatures, and cost considerations. Engineers and designers evaluate these factors to determine the most suitable material for a given application.

spline shaft

In which industries are spline shafts typically used?

Spline shafts find applications in a wide range of industries where torque transmission, relative movement, and load distribution are critical. Here’s a detailed explanation:

1. Automotive Industry:

The automotive industry extensively uses spline shafts in various components and systems. They are found in transmissions, drivelines, steering systems, differentials, and axle assemblies. Spline shafts enable the transmission of torque, accommodate relative movement, and ensure efficient power transfer in vehicles.

2. Aerospace and Defense Industry:

Spline shafts are essential in the aerospace and defense industry. They are used in aircraft landing gear systems, actuation mechanisms, missile guidance systems, engine components, and rotor assemblies. The aerospace and defense sector relies on spline shafts for precise torque transfer, relative movement accommodation, and critical control mechanisms.

3. Industrial Machinery and Equipment:

Spline shafts are widely employed in industrial machinery and equipment. They are used in gearboxes, machine tools, pumps, compressors, conveyors, printing machinery, and packaging equipment. Spline shafts enable torque transmission, accommodate misalignments and vibrations, and ensure accurate movement and synchronization of machine components.

4. Agriculture and Farming:

The agriculture and farming industry extensively uses spline shafts in equipment such as tractors, harvesters, and agricultural implements. Spline shafts are found in power take-off (PTO) units, transmission systems, hydraulic mechanisms, and steering systems. They enable torque transfer, accommodate relative movement, and provide flexibility in agricultural machinery.

5. Construction and Mining:

In the construction and mining industries, spline shafts are used in equipment such as excavators, loaders, bulldozers, and drilling rigs. They are found in hydraulic systems, power transmission systems, and articulated mechanisms. Spline shafts facilitate torque transmission, accommodate misalignments, and enable efficient power transfer in heavy-duty machinery.

6. Marine and Offshore:

Spline shafts have applications in the marine and offshore industry. They are used in propulsion systems, thrusters, rudders, winches, and marine pumps. Spline shafts enable torque transmission in marine vessels and offshore equipment, accommodating axial and radial movement, and ensuring reliable power transfer.

7. Energy and Power Generation:

Spline shafts are utilized in the energy and power generation sector. They are found in turbines, generators, compressors, and other rotating equipment. Spline shafts enable torque transmission and accommodate relative movement in power generation systems, ensuring efficient and reliable operation.

8. Rail and Transportation:

Spline shafts are employed in the rail and transportation industry. They are found in locomotives, railcar systems, and suspension mechanisms. Spline shafts enable torque transfer, accommodate movement and vibrations, and ensure precise control in rail and transportation applications.

These are just a few examples of the industries where spline shafts are typically used. Their versatility, torque transmission capabilities, and ability to accommodate relative movement make them vital components in various sectors that rely on efficient power transfer, flexibility, and precise control.

China Professional Customized CNC Milling Machine Spline Shaft CNC Spline Milling Machine  China Professional Customized CNC Milling Machine Spline Shaft CNC Spline Milling Machine
editor by CX 2024-03-07

Recent Posts